TECHNICAL DATA SHEET

I. Characteristics

Nominal voltage /V/	6
Nominal capacity while 5h discharge C5 /Ah/	175
Capacity in 20h discharge C20 /Ah/	225
Nominal power of discharge IN=CN(Ah)/5h /A/	35
End voltage discharge Ur /V/	5,1
End voltage charge /V/	$7,8 \div 8,1$
Electrolyte density in fully charged condition	$1,28 \pm 0,01 \text{ g/cm}^3$ at 30 ^o C
Length, width, height	260x180x275
Weight with electrolyte	31
Charging- discharging cycles	800
Guarantee /months/	18

II. Characteristics of self-discharge .

The Self-discharge of traction batteries, at temperature $+30^{\circ}$ C after being in fully charged condition 30 days, should be not more than 1 %

III. Batteries' lifetime – characteristics .

Number of Charging – discharging cycles 800 – when following the instructions presented by the manufacturer.

TECHNICAL DATA SHEET

6PZS180

IV. Temperature effect on the capacity.

The capacity of the starter batteries is considered to be true for the temperature of 30° C. If during the testing of the capacity the degrees are different from 30° C, the capacity may be equaled to 30° C using the following formula:

C

$$\mathbf{C} = \frac{1+0,006(T \text{ a t.} - 30^{\circ} \text{ C})}{1+0,006(T \text{ a t.} - 30^{\circ} \text{ C})}$$

C a - True capacity.

C - Measured capacity.

T at. - Average temperature during the testing.

For practical purposes the true capacity could be calculated by using the following way:

- With raising the temperature above 30° C the measured capacity will be increased with 0.6% per every degree.

- With decreasing the temperature under 30° C the measured capacity will be decreased with 0.6% per every degree.